7.5 | Metabolism without Oxygen

By the end of this section, you will be able to do the following:

- Discuss the fundamental difference between anaerobic cellular respiration and fermentation
- Describe the type of fermentation that readily occurs in animal cells and the conditions that initiate that fermentation

In aerobic respiration, the final electron acceptor is an oxygen molecule, O₂. If aerobic respiration occurs, then ATP will be produced using the energy of high-energy electrons carried by NADH or FADH₂ to the electron transport chain. If aerobic respiration does not occur, NADH must be reoxidized to NAD⁺ for reuse as an electron carrier for the glycolytic pathway to continue. How is this done? Some living systems use an organic molecule as the final electron acceptor. Processes that use an organic molecule to regenerate NAD⁺ from NADH are collectively referred to as **fermentation**. In contrast, some living systems use an inorganic molecule as a final electron acceptor. Both methods are called **anaerobic cellular respiration**, in which organisms convert energy for their use in the absence of oxygen.

Anaerobic Cellular Respiration

Certain prokaryotes, including some species in the domains Bacteria and Archaea, use anaerobic respiration. For example, a group of archaeans called methanogens reduces carbon dioxide to methane to oxidize NADH. These microorganisms are found in soil and in the digestive tracts of ruminants, such as cows and sheep. Similarly, sulfate-reducing bacteria, most of which are anaerobic (Figure 7.13), reduce sulfate to hydrogen sulfide to regenerate NAD⁺ from NADH.

Figure 7.13 The green color seen in these coastal waters is from an eruption of hydrogen sulfide–producing bacteria. These anaerobic, sulfate-reducing bacteria release hydrogen sulfide gas as they decompose algae in the water. (credit: modification of work by NASA/Jeff Schmaltz, MODIS Land Rapid Response Team at NASA GSFC, Visible Earth Catalog of NASA images)

Chapter 7 | Cellular Respiration 215

Visit this site (http://openstaxcollege.org/l/fermentation) to see anaerobic cellular respiration in action.

Lactic Acid Fermentation

The fermentation method used by animals and certain bacteria, such as those in yogurt, is lactic acid fermentation (Figure 7.14). This type of fermentation is used routinely in mammalian red blood cells, which do not have mitochondria, and in skeletal muscle that has an insufficient oxygen supply to allow aerobic respiration to continue (that is, in muscles used to the point of fatigue). In muscles, lactic acid accumulation must be removed by the blood circulation, and when the lactic acid loses a hydrogen, the resulting lactate is brought to the liver for further metabolism. The chemical reactions of lactic acid fermentation are the following:

Pyruvic acid + NADH
$$\leftrightarrow$$
 lactic acid + NAD⁺

The enzyme used in this reaction is lactate dehydrogenase (LDH). The reaction can proceed in either direction, but the reaction from left to right is inhibited by acidic conditions. Such lactic acid accumulation was once believed to cause muscle stiffness, fatigue, and soreness, although more recent research disputes this hypothesis. Once the lactic acid has been removed from the muscle and circulated to the liver, it can be reconverted into pyruvic acid and further catabolized for energy.

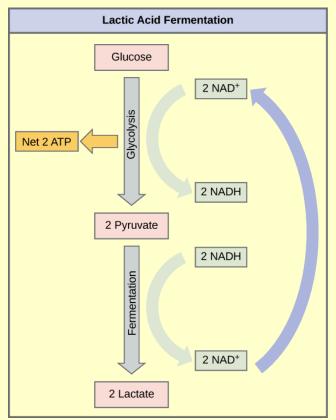


Figure 7.14 Lactic acid fermentation is common in muscle cells that have run out of oxygen.

Tremetol, a metabolic poison found in the white snakeroot plant, prevents the metabolism of lactate. When cows eat this plant, tremetol is concentrated in the milk they produce. Humans who consume the milk can become seriously ill. Symptoms of this disease, which include vomiting, abdominal pain, and tremors, become worse after exercise. Why do you think this is the case?

Alcohol Fermentation

Another familiar fermentation process is alcohol fermentation (Figure 7.15), which produces ethanol. The first chemical reaction of alcohol fermentation is the following (CO₂ does not participate in the second reaction):

pyruvic acid +
$$H^+ \rightarrow CO_2$$
 + acetaldehyde + NADH + $H^+ \rightarrow$ ethanol + NAD⁺

The first reaction is catalyzed by pyruvate decarboxylase, a cytoplasmic enzyme, with a coenzyme of thiamine pyrophosphate (TPP, derived from vitamin B_1 and also called thiamine). A carboxyl group is removed from pyruvic acid, releasing carbon dioxide as a gas. The loss of carbon dioxide reduces the size of the molecule by one carbon, producing acetaldehyde. The second reaction is catalyzed by alcohol dehydrogenase to oxidize NADH to NAD $^+$ and reduce acetaldehyde to ethanol. The fermentation of pyruvic acid by yeast produces the ethanol found in alcoholic beverages. Ethanol tolerance of yeast is variable, ranging from about 5 percent to 21 percent, depending on the yeast strain and environmental conditions.

Chapter 7 | Cellular Respiration 217

Figure 7.15 Fermentation of grape juice into wine produces CO_2 as a byproduct. Fermentation tanks have valves so that the pressure inside the tanks created by the carbon dioxide produced can be released.

Other Types of Fermentation

Other fermentation methods take place in bacteria. We should note that many prokaryotes are *facultatively* anaerobic. This means that they can switch between aerobic respiration and fermentation, depending on the availability of free oxygen. Certain prokaryotes, such as *Clostridia*, are obligate anaerobes. Obligate anaerobes live and grow in the absence of molecular oxygen. Oxygen is a poison to these microorganisms and kills them on exposure. We should also note that all forms of fermentation, except lactic acid fermentation, produce gas. The production of particular types of gas is used as an indicator of the fermentation of specific carbohydrates, which plays a role in the laboratory identification of the bacteria. Various methods of fermentation are used by assorted organisms to ensure an adequate supply of NAD⁺ for the sixth step in glycolysis. Without these pathways, this step would not occur, and ATP could not be harvested from the breakdown of glucose.

7.6 | Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways

By the end of this section, you will be able to do the following:

- Discuss the ways in which carbohydrate metabolic pathways, glycolysis, and the citric acid cycle interrelate with protein and lipid metabolic pathways
- Explain why metabolic pathways are not considered closed systems

You have learned about the catabolism of glucose, which provides energy to living cells. But living things consume organic compounds other than glucose for food. How does a turkey sandwich end up as ATP in your cells? This happens because all of the catabolic pathways for carbohydrates, proteins, and lipids eventually connect into glycolysis and the citric acid cycle pathways (see Figure 7.17). Metabolic pathways should be thought of as porous and interconnecting—that is, substances enter from other pathways, and intermediates leave for other pathways. These pathways are not closed systems! Many of the substrates, intermediates, and products in a particular pathway are reactants in other pathways.

Connections of Other Sugars to Glucose Metabolism

Glycogen, a polymer of glucose, is an energy storage molecule in animals. When there is adequate ATP present, excess glucose is stored as glycogen in both liver and muscle cells. The glycogen will be hydrolyzed into glucose 1-phosphate monomers (G-1-P) if blood sugar levels drop. The presence of glycogen as a source of glucose allows ATP to be produced for a longer period of time during exercise. Glycogen is broken down into